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Abstract

Laser-induced thermotherapy (LITT) is a minimally invasive laser hyperthermia procedure for the treatment of localized tumors.
Mathematical modeling of the photothermal processes in laser-irradiated tissues is essential for optimal treatment planning. In this study,
A Monte Carlo method is introduced to simulate photon transport in the tumor tissues with complex geometries. The dual reciprocity
boundary element method (DRBEM) is then formulated to solve the bioheat transfer equation in the tumors. The model is validated with
the finite difference solutions. To illustrate the applications of the proposed DRBEM, several laser delivery schemes, including external
laser irradiation, single or multiple laser fiber delivery applicators, are studied for tumors with regular or irregular geometric shapes. The
temperature transients, laser energy distribution and coagulation patterns for different laser delivery modes are demonstrated. The
unique advantages of the DRBEM, such as easy adaptability to complex tumor geometries and no need to discretize the inner domain,
may make it well-suited and robust approach for predicting and controlling the temperature evolution in laser-induced thermotherapy
procedure.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Laser-induced thermotherapy (LITT) has been investi-
gated and used clinically for more than two decades as a
minimally invasive method for treating different types of
tumors in the liver, brain, head and neck, etc. [1]. In the
LITT procedure, a near-infrared laser radiation is delivered
to the targeted area via an external laser beam irradiated
on the skin surface or by inserting a scattering laser fiber
applicator into the tumor center (the latter is referred to
as interstitial laser thermotherapy, ILT). The targeted path-
ological tissue is destroyed by the immediate or delayed
hyperthermic and coagulative effects due to photon absorp-
tion and heat transfer in the tissue [2,3].
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Ideally, the goal of LITT is to enable total pathological
cell death and to minimize damage to surrounding healthy
tissue, especially in vital organs. Therefore, mathematical
models and/or real-time monitoring experimental tech-
niques are indispensable for planning, control and verifica-
tion of the treatment effect. Most of the real-time
monitoring experimental techniques are subject to some
drawbacks such as patient discomfort, poor resolution,
radiation exposure, etc. [4,5].

On the other hand, theoretical modeling of the laser-tis-
sue interaction process is an important and effective means
to facilitate the evaluation of a wide range of parameters
(e.g., laser wavelength, laser duration time, and total
delivered energy) for a desired outcome. Although many
theoretical studies have been conducted to investigate the
hyperthermic and coagulative responses of tissue during
LITT (e.g., [6–14]), most of the previous models were
proposed for biological tissues with regular geometries. In
reality, the tumors can have different sizes and shapes
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Nomenclature

cb specific heat of blood, J/kg K
cp specific heat of tissue, J/kg K
fj expansion functions
k thermal conductivity of tissue, W/m K
lc characteristic length, m
L number of BEM internal nodes
Lð�r; ŝÞ laser intensity, W/m2 sr
Lx, Ly, Lz the lengths in x, y and z directions, m
N number of BEM boundary nodes
Np total photon number in Monte Carlo simulation
n refractive index
pðŝ; ŝ0Þ phase function for single scattering
P laser power, W
ql heat generation due to laser absorption in tissue,

W/m3

Ql non-dimensional heat generation due to laser
absorption

qm metabolic heat generation, W/m3

Qm non-dimensional metabolic heat generation
rj the radial distance from the DR collocation

point j, m
�r position vector in radiative transfer equation, m
s stepsize of photon movement, m
ŝ; ŝ0 direction vectors

t time, s
T tissue temperature, �C
Ta temperature of the supplying arterial blood, �C
Tc characteristic temperature, �C
u non-dimensional temperature
ua non-dimensional arterial blood temperature
u* fundamental solution of Poisson equation
wb blood perfusion rate, m3/m3 tissue s
W photon weight
x, y, z coordinate variables, m
X, Y, Z non-dimensional coordinate variables

Greek symbols

a thermal diffusivity of tissue, m2/s
/ azimuthal angle in photon scattering, rad
lt attenuation coefficient, m�1

la absorption coefficient, m�1

ls scattering coefficient, m�1

lx, ly, lz direction cosines for photon movement
h deflection angle in photon scattering, rad
q density of tissue, kg/m3

qb density of blood, kg/m3

x
0

solid angle, sr
n, n1, n2, n3 random numbers in the interval (0, 1)
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Fig. 1. The Cartesian coordinate systems used in the Monte Carlo
simulation.
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depending on the different organs and disease stages [15]. To
establish a theoretical model that has a good adaptability to
complex tumor shapes, we must resort to new numerical
algorithms to predict the photothermal processes occurring
in laser-induced thermotherapy. Among the existing numer-
ical methods, the finite difference method (FDM) is not con-
venient for the establishing of such a model due to its poor
adaptability to complex geometries. Therefore, some
researchers attempted to use the finite element method
(FEM) to predict the transient temperature distribution in
laser-irradiated biological tissues (e.g. [16–18]). But the
FEM involves large computational costs (memory and
CPU time) since it is a domain-based numerical technique
that requires discretizing the space everywhere inside the
entire computational domain.

In recent years, the boundary element method (BEM)
has been stimulating more and more interests as a powerful
tool for analyzing heat transfer processes in biological sys-
tems since its first application in bioheat transfer area [19].
Compared with the FDM and FEM methods, BEM has
unique ability to provide a complete problem solution in
terms of boundary values only, with substantial savings
in computer time and data preparation [20–22]. However,
there exist two severe restrictions in the traditional BEM
for solving the bioheat transfer equation (BHTE) in
laser-irradiated tissues. The first is that the fundamental
solution to the BHTE with the non-homogeneous blood
perfusion term is very difficult to obtain, thus the equiva-
lent boundary integral equation is not available. The sec-
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ond restriction is that the volumetric heat generation term
arising from laser light absorption needs to be included in
the BEM formulation by means of domain integrals, which
detracts from the boundary-only feature of the BEM tech-
nique. Fortunately, the above-mentioned difficulties can be
overcome using the dual reciprocity boundary element
method (DRBEM). Since its first introduction by Nardini
and Brebbia [23], the DRBEM has been successfully
applied to various thermophysical problems [24] including
bioheat transfer problems [25,26]. However, it has not been
reported to simulate the photothermal responses of biolog-
ical tissues in laser-induced thermotherapy, which needs to
consider the photon propagation in turbid tissues with
complex geometries as well as the effects of blood perfusion
and metabolic heat generation.
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Fig. 2. The geometry used for describing the reflection and transmittance
behavior at a boundary with arbitrary geometry.
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In this study, a DRBEM model is developed to solve the
photothermal interactions in laser induced thermotherapy.
The transient temperature elevation is predicted by the bio-
heat equation taking into account the blood perfusion
term. The Monte Carlo approach is applied to simulate
the photon transport in laser irradiated tissues. Three dif-
ferent tumor shapes, i.e., square, circle and ellipse, and var-
ious laser delivery modes, i.e., external laser irradiation,
single and multiple laser fiber schemes, are used as illustra-
tive examples to demonstrate the robustness of the pro-
posed model. Detailed description is given to show the
coupling between the Monte Carlo model and the DRBEM
formulation. Temperature transients, laser light energy dis-
tribution and coagulation patterns are reported for various
LITT procedures.
2. Numerical method and algorithms

2.1. Dual reciprocity boundary element formulation

For simplicity, the two-dimensional problem is consid-
ered in this study. The well-known Pennes bioheat equa-
tion is used to model heat transfer in laser-irradiated
tissues [27]:
qcp
oT
ot
¼ r � ðkrT Þ þ wbqbcbðT a � T Þ þ qm þ ql ð1Þ
Boundary nodes 

total N-nodes

control volume of 

node i

upling of the Monte Carlo results with the DRBEM.
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Fig. 4. Validation of the DRBEM computer code.
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For brevity, it is assumed that all the thermal and opti-
cal properties in this study are constant. Eq. (1) can be re-
expressed in the following non-dimensional form:

r2u ¼ ou
os
þ W B � uþ Dþ Qm þ Ql ð2Þ

with the dimensionless quantities defined as

u ¼ T
T c

; ua ¼
T a

T c

; s ¼ at

l2
c

; X ¼ x
lc

; Y ¼ y
lc

Qm ¼ �
l2

cqm

kT c

; Ql ¼ �
l2

cql

kT c

; W B ¼
l2

cwbqbcb

k

D ¼ � l2
cwbqbcbua

k

ð3Þ

If all the right-hand terms of Eq. (1) are collectively rep-
resented by b, then Eq. (1) can be written in the following
form:

r2u ¼ b ð4Þ

Clearly, b is a function of both time and space.
The solution of Eq. (4) can be expressed as the sum of

the solution of Laplace’s equation and a particular solution
û for the Poisson equation r2û ¼ b. Due to the difficulties
of finding a solution û, the dual reciprocity method uses a
series of particular solution ûj instead of a single function
û. To this end, the source term b in Eq. (4) is firstly
expanded in a series:

b �
XNþL

j¼1

fjaj ð5Þ

where N is the number of BEM boundary nodes at which
dual reciprocity points are collocated, L is the number of
additional internal dual-reciprocity (DR) collocation
points. The expansion functions fj are specially chosen such
that they satisfy the Poisson equation:

r2ûj ¼ fj ð6Þ

The expansion functions fj can be of various types, but the
radial basis functions (RBF) is proved to be the most suc-
cessful by the extensive computational studies [24]. In this
paper, the expansion functions fj is chosen as fj = 1 + rj,
where rj is the radial distance from the DR collocation
point j.

Substituting Eq. (5) into Eq. (4), one obtains

r2u ¼
XNþL

j¼1

ajr2ûj ð7Þ

Multiplying both sides by the fundamental solution u*of
the Poisson equation, integrating over the whole computa-
tional domain, and using the Green’s second identity on
both sides result in the dual-reciprocity boundary integral
equation:
ciui þ
Z

C
q�udC�

Z
C

u�qdC

¼
XNþL

j¼1

aj ciûij þ
Z

C
q�ûj dC�

Z
C

u�q̂j dC

� �
ð8Þ
where ci is a constant that only depends on the geometry at
the node i; q = ou/on, q* = ou*/on, q̂j ¼ oûj=on and n is the
unit outward normal to the boundary surface of the solu-
tion domain. For two-dimensional problem considered
here, u*, q*, û, q̂ can be derived as in [23,24].

By using the standard BEM discretization and collocat-
ing by taking the source point at the i = 1, 2, . . .,N + L

boundary and interior nodes, Eq. (8) can be discretized as

ciui þ
XN

k¼1

H ikuk �
XN

k¼1

Gikqk

¼
XNþL

j¼1

aj ciûij þ
XN

k¼1

H ikûkj �
XN

k¼1

Gikq̂kj

 !
ð9Þ
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where Hik ¼
R

Ck
q�i dC, Gik ¼

R
Ck

u�i dC for constant
elements.

Eq. (9) can be expressed in a compact matrix form:
Hu�Gq ¼ ðHû�Gq̂Þa ð10Þ
where H and G are the matrices of Hik and Gik, respectively
(it should be noted that the ci terms in Eq. (9) have been
incorporated onto the diagonal of H); The matrices T, q,bT and q̂ correspond to vectors Tk, qk, bT kj, and q̂kj, respec-
tively; a is the vector of the expansion coefficient aj, which
can be solved according to Eq. (5):
a ¼ F�1b ð11Þ
where F is the matrix form of the function f; b is the vector
of bk.

According to Eq. (2), the vector b can be calculated as
b ¼ _uþ W BuþDþQm þQl ð12Þ
where _u represents ou/ot, and D, Qm, Ql are vectors arising
from blood perfusion, metabolic heat generation and heat
source due to laser light absorption.

A linear approximation is proposed for the variation of
u, q within each time step, in the following form:
c

a

Fig. 5. Three tumor geometries and DRBEM
_u ¼ 1

Dt
ðumþ1 � umÞ ð13aÞ

u ¼ ð1� huÞum þ huumþ1 ð13bÞ
q ¼ ð1� hqÞqm þ hqqmþ1 ð13cÞ

where hu and hq are parameters which position the values of
u and q between time level m and m + 1. A series of tests
carried out in [24] indicated that, in general, good accuracy
can be obtained for the values hu and hq equal to 0.5 and
1.0, respectively.

Substituting Eqs. (11)–(13) into Eq. (10) yields

2

Ds
þ W B

� �
SþH

� �
umþ1 � 2Gqmþ1

¼ 2

Ds
� W B

� �
S�H

� �
um � 2SðDþQm þQlÞ ð14Þ

where S ¼ �ðHû�Gq̂ÞF�1 and the values hu = 0.5 and
hq = 1.0 have been used.

Applying the boundary conditions at time (m + 1)Dt

and substituting the calculated results at the previous time
mDt, the unknown u and q at time (m + 1)Dt can be solved
from the above equation.

In LITT clinics, the tumors are usually in contact with
the healthy tissues or the ambient (for superficial tumors).
In this study, the heat exchange between the tumors and
the surrounding healthy tissues is considered as the bound-
ary condition of the third kind at the tumor boundaries.
b

discretizations considered in this study.
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The implementation of the third kind boundary condition
in a BEM model will not be mentioned here since it is avail-
able elsewhere (e.g. [24]).

In Eq. (14), the heat source terms due to blood perfusion
and metabolism, D and Qm, are considered to be constant.
However, the heat generation term arising from laser light
absorption, Ql, is non-homogeneous and space-dependent,
which can be obtained by the photon propagation simula-
tion in the biological tissues.
2.2. Monte Carlo simulation of photon propagation in tissues

Light propagation in soft biological tissues is much
more complicated than in industry solids. In biological tis-
sues, light is both absorbed and scattered [28]. Scattering
dominates in the red and near-infrared spectrum. This pro-
vides a therapeutic window for light penetration in tissue
[2]. The most widely used theory describing the light prop-
agation in biological tissues is the radiative transfer equa-
tion [2,3]:

ŝ � rLð�r; ŝÞ þ ltLð�r; ŝÞ ¼
lt

4p

Z
4p

pð̂s; ŝ0ÞLð�r; ŝ0Þdx0 ð15Þ
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Fig. 6. Calculating results for square tumor when external laser beam irradia
temporal evolution of temperature.
The analytical solutions for the radiative transfer equa-
tion can be obtained only for very simple cases [3], e.g.,
one-dimensional geometry. Monte Carlo simulation [29]
of photon propagation offers a flexible yet rigorous
approach toward photon transport in turbid materials, like
biological tissues, and it can easily deal with two- or three-
dimensional problems with complex geometry. For these
reasons, it has been widely used to simulate light transport
in tissues for various applications (e.g., [30–32]). In this
study, the Monte Carlo method will be employed to simu-
late the photon propagation in tissues with various
geometries.

The Monte Carlo simulation is conducted in a three-
dimensional (3-D) Cartesian coordinate system, as depicted
in Fig. 1(a), where a square cylinder is used as the illustra-
tive example and the symbol rl denotes the radius of the
laser beam spot (it is worth noting that rl is not an input
parameter for implanted fiber delivery cases). The origin
of the coordinate system o is located at the center of the
cylinder. Though the Monte Carlo simulation is carried
out in a 3-D geometry, the DRBEM calculation described
earlier is performed in a two-dimensional (2-D) geometry.
Therefore, the Monte Carlo simulating results need to be
30 40 50

1  Surface temperature
2  Center temperature

Time (s)

b

tion is applied: (a) light distribution, (b) temperature distribution and (c)
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converted into 2-D results upon its completion. To this
end, the dimension of the cylinder in y direction is
intentionally chosen to be much longer than the x and z

dimensions, as is noticed in Fig. 1(a). Through this method,
the 2-D photon transport can be simulated in a 3-D
geometry. Our calculations show that the simulating results
are y-independent when the dimension of the cylinder in y

direction is 10 times longer than the x and z dimensions.
The 2-D Monte Carlo simulation devised in this study is
suited for the description of the light propagation induced
by an external rectangular laser beam or by an inserting
cylindrical diffusively scattering fiber-tip. Fig. 1(b) shows
the 2-D coordinate system, which is used to store the
Monte Carlo simulating results at the mid-length plane in
y direction. Such 2-D results are then incorporated into
the DRBEM algorithm as the heat source due to laser light
absorption. Other types of cylinders, e.g. circular and
elliptic cylinders, are treated in a similar way.

For the external laser beam cases, a collimated flat-field
beam with a radius rl is considered. The launch position of
photon is
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Fig. 7. Calculating results for circular tumor when external laser beam irradia
temporal evolution of temperature.
x ¼ rl

ffiffiffiffiffi
n1

p
if n2 P 0:5 ð16aÞ

x ¼ �rl

ffiffiffiffiffi
n1

p
if n2 < 0:5 ð16bÞ

y ¼ 2Lyn3 � Ly ð16cÞ
z ¼ 0:5Lz ð16dÞ
For the implanted fiber cases, the laser fiber tip is
assumed to be diffusive, which can distribute the laser
energy in all directions equally. The size of the fiber tip
itself is considered to be negligible compared to that of
the tissue. Therefore, the launching point of photon is at
the same location where the fiber tip is. The launch direc-
tion of photon is determined by

h ¼ arccosð2n1 � 1Þ ð17aÞ
/ ¼ 2pn2 ð17bÞ
where h is the deflection angle relative to z-axis and / is the
azimuthal angle. The direction cosine of the launching pho-
ton is
40 50

rface temperature
nter temperature

tion is applied: (a) light distribution, (b) temperature distribution and (c)



3876 J. Zhou et al. / International Journal of Heat and Mass Transfer 51 (2008) 3869–3881
lx ¼ sin h cos / ð18aÞ
ly ¼ sin h sin / ð18bÞ
lz ¼ cos h ð18cÞ

Since the incident direction is in minus y direction and
perpendicular to x–y plane, the initial direction cosine is
[0,0,1]. If the refractive indices of the surrounding medium
(healthy tissue, or air if the tumor is exposed to the ambi-
ent) and tissue are n1 and n2, respectively, then the specular
reflectance, Rsp, is calculated by

Rsp ¼
ðn1 � n2Þ2

ðn1 þ n2Þ2
ð19Þ

The photon weight, set initially to 1, is decremented to
1 � Rsp.
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Fig. 8. Calculating results for elliptic tumor when external laser beam
irradiation is applied: (a) light distribution, (b) temperature distribution
and (c) temporal evolution of temperature.
The step size of the photon, s, between interaction sites
is sampled according to the following equation:

s ¼ � lnðnÞ=lt ð20Þ

Once the step size s is determined, the new position of the
photon can be calculated by the current photon position
and the current direction cosine values.

At the interaction point, a fraction of the photon weight,
(la/lt)W, will be deposited in the local grid element (x, y, z)
due to absorption by tissue:

Qðx; y; zÞ  Qðx; y; zÞ þ ðla=ltÞW ð21Þ

The new photon weight is (ls/lt)W.
In the Monte Carlo algorithm used in this study, only

the photons falling into the grid elements at the mid-length
plane in y direction need to be stored since only the absorp-
tion energies in this plane will be used as the input of the
DRBEM computer code. Once the photon has been moved
and its weight is decreased due to absorption, the photon is
ready to be scattered. Algorithms for computing scattering
Fig. 9. Calculating results for square tumor when single laser fiber tip is
applied at the tumor center: (a) light distribution and (b) temperature
distribution.



Fig. 10. Calculating results for circular tumor when single laser fiber tip is
applied at the tumor center: (a) light distribution and (b) temperature
distribution.
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angles and direction are described in detail elsewhere (e.g.
[12,31]).

During a step of size s, the photon may cross the bound-
ary of the tumor volumes. If this is the case, the photon
may either escape as observed reflectance (or transmit-
tance) or be internally reflected by the boundary. The prob-
ability of a photon being internally reflected depends on the
angle of the incidence hi. The internal reflectance is calcu-
lated by Fresnel’s law. Because the tumor geometries are
considered to be arbitrary in this study, a general algorithm
needs to be formulated to trace the photon traveling direc-
tion after reflection and transmittance at the boundary with
complex shapes.

Fig. 2 shows the geometry when reflection and transmit-
tance occur at a boundary, the two sides of which have dif-
ferent refractive indices. The unit vector n

*
denotes the

outward normal of the surface at the crossing point O.
The direction cosine of n

*
is expressed as (nx, ny, nz). �n

*

denotes the inward normal vector. The unit vectors AO
*

,
OB
*

, and OF
*

denote the incident direction, reflecting direc-
tion and refracting direction, respectively.

The angle of incidence hi, the angle between the inci-
dence direction and the outward normal, is calculated by

hi ¼ arccosð� ~AO � n
*Þ

¼ arccos½�ðlxnx þ lyny þ lznzÞ� ð22Þ

where ‘‘ � ” represents the scalar product of two vectors;
(lx, ly, lz) denotes the current direction cosine of the
photon.

The angle of transmittance ht can be calculated by
Snell’s law:

ni sin hi ¼ nt sin ht ð23Þ

where ni is the refractive index of the medium from which
the photon is incident, nt is the refractive index of the med-
ium into which the photon is transmitted.

According to the parallelogram rule governing the addi-
tion of two vectors, shown in Fig. 2, the new direction after
reflection, OB

*

, can be calculated as

OB
*

¼ AC
*

¼ AO
*

þOC
*

¼ AO
*

þ2 cos hi n
* ð24Þ

As long as the equation describing the curved surface is
known, the photon reflection and transmittance can be de-
scribed for any tumor shapes using Eqs. (22)–(24).

A technique called Russian roulette [31] is used to termi-
nate the photon propagation. If the photon has not sur-
vived a Russian roulette when its weight is below the
threshold weight (e.g., 0.0001), the tracing of this photon
is terminated, and a new photon is introduced.

The rate of heat generation due to laser light absorption
at node i in the mid-length plane in y direction, ql[i], in the
units of W/m3, is calculated by the following relation:

ql½i� ¼
Qðx; zÞP
NpV ½i� ð25Þ
where (x,z) is the location of the node i; Np is the total pho-
ton number; V[i] is the control volume of node i; P is the
incident laser power.

Taking the elliptic cylinder as the illustrative example,
Fig. 3 shows the distribution of DRBEM boundary and
internal nodes and the coupling of the Monte Carlo simu-
lation results with the DRBEM. A control volume is
assigned to each DRBEM node (totally N + L nodes).
For clarity, we only show two control volumes for nodes
i and j. To achieve higher accuracy, each DRBEM node
should be located at the center of its control volume except
the boundary nodes (e.g. j in Fig. 3). For the boundary
nodes, the control volume should be chosen to be small
enough such that the boundary node can be regarded as
the representative point for that control volume. But the
control volumes for boundary nodes cannot be too small
since a very small control volume will carry little photon
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information. Therefore, there is a compromise in the
choosing of the control volumes for boundary nodes. The
choice of the control volume shape can be arbitrary. But
it should be made certain that there is no overlap between
any two control volumes. Otherwise, the same photon
absorption event will be counted two times, which is phys-
ically unreasonable.

When a photon absorption event takes place in the pro-
cess of Monte Carlo simulation process, some special com-
puter codes need to be written to judge if the photon falls
into the N + L control volumes. If this is the case, Eq.
(21) will be used to store the photon absorption energy.

3. Application examples

A FORTRAN computer code has been written based on the
preceding description. The computer code must be vali-
dated before applied to calculate the light propagation
and heat transfer in laser-irradiated biological tissues.

Consider the heat diffusion in a square plate initially at
30 �C. From time t > 0, the temperatures of all the bound-
aries are suddenly decreased to 0 �C. The side length of the
square region is 3 m. The thermal diffusivity is 1.25 m2/s.
Fig. 11. Calculating results for elliptic tumor when single laser fiber tip is
distribution.
The time step interval is 0.05 s. There are 24 time steps in
total. The boundary of the square region is discretized by
40 constant boundary elements and 33 internal nodes are
used. The discretization is shown in Fig. 4(a). All the
boundary and internal nodes are arranged in counter-
clockwise direction. Fig. 4(b) shows the temperature varia-
tion with time at the center point [i.e., node 73 in Fig. 4(a)].
As can be seen, the DRBEM results agree very well with
those calculated by the finite difference method (FDM).
The Monte Carlo computer code has been well validated
in the authors’ previous publications [12,33] and it will
not be repeated here.

In the following, the numerical model developed above
will be used to simulate the photothermal responses of bio-
logical tissues in laser-induced thermotherapy for several
illustrative examples. The light and heat transport in three
different tumor geometries, i.e., square, circle and ellipse,
will be solved, as depicted in Fig. 5, to demonstrate the
robustness of the proposed model. The distribution of the
DRBEM boundary nodes and internal nodes are also
shown in Fig. 5. Such a discretization is obtained by a
refinement grid test on both boundary and internal nodes.
It is worth pointing out that the symmetric distribution of
applied at the tumor center: (a) light distribution and (b) temperature
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the internal nodes is just for illustrative simulation purpose.
In fact, the choice of the internal nodes for a DRBEM
model is not restricted to a symmetric configuration. One
can select these nodes in any internal region of the domain
based on requirement. The laser delivery modes can be
either external laser beam irradiation or implanted fiber
heating. The latter one corresponds to the interstitial laser
thermotherapy (ILT). When the target volume is too large
for treatment with a single fiber tip or when an irregular
volume has to be treated, multiple fiber tips may be neces-
sary for a single session treatment [4], which will also be
examined in this section.

Unless otherwise specified, the following properties of a
biological tissue are used in the numerical solutions:
q = 1000 kg/m3, k = 0.628 W/m K, cp = 4187 J/kg K,
wb = 1.87 � 10�3 m3/m3 tissue s for the thermophysical
properties [34]; la = 1.0 cm�1, ls = 100.0 cm�1, anisotropy
factor g = 0.8 and refractive index n = 1.33 for the optical
properties, which are chosen based on the general data in
the visible and near-infrared spectrum [35]. The thermal
physical properties and temperature of arterial blood are
[34]: qb = 1.06 � 103 kg/m3, cb = 3860 J/kg K, Ta = 37 �C.
Fig. 12. Light energy and temperature distributions in the elliptic
The metabolic heat generation is Qm = 1.19 � 103 W/m3.
The heat exchange occurring at the tumor boundaries are
treated via a convective boundary condition in which an
effective convection coefficient h = 10 W/m2 K and fluid
temperature 20 �C are used.

Figs. 6–8 show the calculating results when the external
laser beam heating mode is applied. For the sake of com-
parison, the three 2-D objects depicted in Fig. 5 have the
same area though they take different shapes. Their sizes
are chosen as follows. The half side length of the square
tumor is a = 2 mm. The radius of the circle tumor is
1.13a. The long and short radii of the ellipse tumor are
1.60a and 0.80a, respectively. The laser power, heating
duration, and spot radius are chosen as 10 W, 10 s, and
0.2 mm, respectively. Though a continuous wave laser is
used for illustrative examples, the duration time of laser
heating is a finite value. Therefore, the term ‘‘laser pulse”

will still be used for the convenience of description. As is
seen from the sub-figure (c) in Figs. 6–8, the temperatures
at the laser spot center and tumor center firstly increase
with time, reach a maximum value at the time when laser
is turned off, and then fall down due to heat loss into the
tumor when two laser fiber tips are applied at the same time.



Fig. 13. Light energy and temperature distributions in the square tumor
when four laser fiber tips are applied at the same time.
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surrounding tissues. Sub-figure (a) of Figs. 6–8 shows the
volumetric heat generation (in W/cm3) due to laser light
absorption in tissue. It can be seen that under the same
laser irradiation parameters and the same tumor bulk vol-
ume, the light energy converted to heat source for the
square tumor shape is the highest among the three tumor
shapes shown in Fig. 5. This is because that more photons
will be transmitted out of the tumor volumes when the
tumors take circular or elliptic shapes. Sub-figure (b) of
Figs. 6–8 shows the temperature distribution at the time
when the laser is turned off. As can be noticed, under the
external heating mode, the temperatures inside the tumor
volume are considerably non-uniform. The maximum tem-
perature differences across the tumor bulk volume for
square, circle and ellipse shapes are, respectively, 32, 26
and 22 �C. This leads to a failed surgery treatment since
only part of the tumor cells can be killed through denatur-
ization while the tumor cells in other parts are still alive
and will continue to grow after this treatment session. To
achieve complete coagulation of the tumor cells, one has
to increase the laser irradiation power. This will inevitably
cause severe traumatism and pain on the patients.

To realize effective tumor treatment, a complete photo-
coagulation is expected to be achieved and undesired dam-
age to the surrounding healthy tissues should be avoided as
possible as one can. Interstitial laser thermotherapy is a
high efficient minimally invasive technique for the treat-
ment of tumors. This surgery has been performed increas-
ingly for local destruction of different tumors, which is
performed by directly inserting the laser fiber tip into the
center of the tumor bulk. However, the clinical application
of ILT is still limited. One of the reasons is the limited
capability of existing treatment planning models in accu-
rately predicting the coagulation zone. The following sim-
ulations are intended to examine the applicability of the
proposed DRBEM model in predicting the photothermal
responses in interstitial thermotherapy procedure.

Figs. 9–11 show the simulation results when a single
laser fiber tip is inserted into the center of the tumor bulk
for square, circular and elliptic tumor geometries. The laser
irradiation parameters and tumor sizes are the same as
those in Figs. 6–8. As can be seen, when using the
implanted fiber heating mode, the maximum temperature
differences inside the whole tumor bulk volumes are 14,
12 and 13 �C for square, circular and elliptic tumors,
respectively. This indicates that a uniform temperature ele-
vation is achieved by the implanted laser fiber system.

Among the three types of tumors shown in Fig. 5, the
elliptic tumor is irregular-type one since the two dimen-
sions in x and z directions are quite different. For such
irregular tumor volumes, multiple fiber system may be nec-
essary for the best treatment effect. Fig. 12 shows the light
energy and temperature distributions in the elliptic tumor
when two laser fiber tips are inserted into the tumor volume
at the same time. In this case, the power released by each
fiber tip is 5 W and thus the total laser power is still
10 W. The locations of the two fiber tips are x = 0.8a,
z = 0 and x = �0.8a, z = 0, respectively (a = 2 mm). It
can be observed that the maximum temperature difference
inside the elliptic tumor volume is reduced to 2.6 �C when
two laser fiber applicators are applied at the same time.
This clearly indicates that the optimal number of the laser
fiber tips should be chosen based on the shape of the
tumor.

For large size tumors, to implement successful therapeu-
tic procedure, even two laser fiber tips may not be enough.
Instead, multiple laser fiber tips may be necessary [4].
Fig. 13 shows the light energy and temperature distribu-
tions in the square tumor when four laser fiber tips are
applied at the same time. The power for each of the fiber
tip is 15 W. The half side length of the square tumor is
a = 4 mm. The locations of the four fiber tips are
(x = 0.5a, z = 0.5a), (x = �0.5a, z = 0.5a), (x = �0.5a,
z = �0.5a) and (x = 0.5a, z = �0.5a). Other parameters
are the same as those discussed above. It can be seen from
Fig. 13 that for large size tumor, increasing the number of
the fiber tips can achieve uniform temperature elevation.
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4. Conclusions

A two dimensional numerical model is developed to
analyze the laser energy transport and heat transfer during
laser-induced thermotherapy. The Monte Carlo approach
is used simulate the photon propagation for both the exter-
nal irradiation and implanted fiber cases. The dual reci-
procity boundary element model is established to solve
the bioheat equation to calculate the transient heat transfer
in the laser-irradiated biological tissues. The coupling of
the Monte Carlo approach and DRBEM model is
described in detail. After the DRBEM model is validated
against the finite difference method, the developed model
is then used to simulate the photothermal response in
LITT. Several typical tumor geometries are particularly
considered to illustrate the applications of the present
model. The calculating results show that the proposed
DRBEM model can be used to deal with tumors with var-
ious geometrical shapes under different laser delivery
modes with relative ease. The transient temperature varia-
tion, laser light energy distribution and coagulation pat-
terns are clearly demonstrated for various cases, which
are frequently encountered in clinics. Based on the require-
ments for inhibiting tumor growth and avoiding undesired
damage to the surrounding normal tissues, an approach to
optimize the treatment parameters can be obtained using
the present DRBEM model.
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